ComEd Smart Energy Design Assistance Center Public Sector Enhanced Building Optimization IPA Program Impact Evaluation Report

Energy Efficiency I Demand Response Plan:

 Plan Year 9 (PY9)
Presented to ComEd

FINAL

May 30, 2018

Prepared by:

Jennifer Ma
Lorraine Renta
Navigant Consulting, Inc
Navigant Consulting, Inc

Submitted to:

ComEd
Three Lincoln Centre
Oakbrook Terrace, IL 60181

Submitted by:

Navigant Consulting, Inc.
150 N. Riverside, Suite 2100
Chicago, IL 60606

Contact:

Randy Gunn, Managing Director 312.583.5714

Randy.Gunn@Navigant.com

Jeff Erickson, Director 608.497.2322

Jeff.Erickson@Navigant.com

Patricia Plympton, Associate Director 202-253-9356
Partricia.Plympton@Navigant.com

Disclaimer: This report was prepared by Navigant Consulting, Inc. ("Navigant") for ComEd based upon information provided by ComEd and from other sources. Use of this report by any other party for whatever purpose should not, and does not, absolve such party from using due diligence in verifying the report's contents. Neither Navigant nor any of its subsidiaries or affiliates assumes any liability or duty of care to such parties, and hereby disclaims any such liability.

Table of Contents

1. Introduction 1
2. Program Description 1
3. Program Savings 2
4. Program Savings by Measure 2
5. Impact Analysis Findings and Recommendations 4
5.1 Impact Parameter Estimates 4
5.2 Other Impact Findings and Recommendations 5
6. Appendix 1. Impact Analysis Methodology 6
6.1 Installed Programmable Thermostats 6
6.2 Enthalpy Economizer Optimization 7
6.3 HVAC Tune-Up 7
6.4 Notched V Belt for Supply Fan 7
6.5 HVAC Scheduling/Setbacks and Install Programmable Thermostat 8
6.6 Demand Controlled Ventilation on Rooftop Unit 9
6.7 Variable-Frequency Drive 9
6.8 Economizer Repair and Optimization 10
7. Appendix 2. Total Resource Cost Detail 11
List of Tables and Figures
Figure 2-1. Percent of Measures Installed by Type 2
Table 2-1. PY9 Volumetric Findings Detail 1
Table 3-1. PY9 Total Annual Incremental Savings 2
Table 4-1. PY9 Energy Savings by Measure 3
Table 4-2. PY9 Demand Savings by Measure 3
Table 4-3. PY9 Peak Demand Savings by Measure 4
Table 5-1. PY9 Verified Gross Savings Parameters
Table 6-1. HVAC Tune-up Custom and Deemed Values Comparison 7
Table 6-2. V-Belts Custom and Deemed Values Comparison 8
Table 6-3. Thermostat Custom and Deemed Values 9
Table 6-4. Demand Controlled Ventilation Custom and Deemed Values 9
Table 6-5. Variable-Frequency Drive Custom and Deemed Values 10
Table 6-6. Economizer Custom and Deemed Values 11
Table 7-1. Total Resource Cost Savings Summary 11

1. INTRODUCTION

This report presents the results of the impact evaluation of ComEd's Program Year 9 (PY9) Smart Energy Design Assistance Center (SEDAC) Public Sector Enhanced Building Optimization IPA program. It presents a summary of the energy and demand impacts for the total program and broken out by relevant measure and program structure details. Section 6 (Appendix 1) presents the impact analysis methodology. PY9 covers June 1, 2016 through December 31, 2017.

2. Program Description

The aim of the SEDAC Program was to provide public sector customers with customized HVAC optimization as an expansion of the Illinois Department of Commerce and Economic Opportunity (DCEO) program. The program provided HVAC tune-ups, direct installation measures, and HVAC optimization assessments. The program was implemented by 360 Energy Group (360EG).

Targeted participants were public sector ComEd customers with demand < 100 kW with Package Rooftop Unit (RTU) or Split Systems with capacity greater than five tons that have not had preventative maintenance performed in the last three years. The program leveraged a network of qualified and preapproved mechanical contractors who performed the tune-ups and direct install measures, and implemented the customer-desired HVAC optimization strategies.

The program had 79 participants in PY9 and distributed 287 measures as shown in the following table and graph.

Table 2-1. PY9 Volumetric Findings Detail

Participation	PY9 Results
Participants	79
Projects	79
Measures Installed	287
Units/Project	3.6
Enhanced HVAC Tune-up	118
Notched V Belt for Supply Fan	89
HVAC Scheduling/Setbacks	26
Install Programmable Thermostat	37
Demand Controlled Ventilation (DCV) on Rooftop Unit (RTU)	7
Dynamic Cycle Management (Variable-frequency Drive)	8
Enthalpy Economizer Optimization	2
Souce:ComEd trackg cara and	

Source: ComEd tracking data and Navigant team analysis.

Figure 2-1. Percent of Measures Installed by Type

Source: Evaluation Analysis

3. Program Savings

Table 3-1 summarizes the incremental energy and demand savings the SEDAC Program achieved in PY9.

Table 3-1. PY9 Total Annual Incremental Savings

| Savings Category | Energy Savings
 (kWh) | Demand Savings
 (kW) | Peak Demand
 Savings (kW) |
| :--- | ---: | ---: | ---: | ---: |
| Ex Ante Gross Savings* | $2,254,315$ | NR | NR |
| Program Gross Realization Rate | 99% | NA | NA |
| Verified Gross Savings | $2,230,330$ | 620 | 310 |
| Program Net-to-Gross Ratio (NTGR) | 0.95 | 0.95 | 0.95 |
| Verified Net Savings | $2,118,813$ | 589 | 295 |
| NR = Not Reported | | | |
| * Ex ante savings summed from "PY9 Data - Project Savings.xlsx" | | | |
| Source: ComEd tracking data and Navigant team analysis. | | | |

4. Program Savings by Measure

The program includes seven measures as shown in the following table. The programmable thermostats and enhanced HVAC Tune-ups contributed the most savings. Navigant calculated the total technical measure life, total persistence, and total effective useful life (EUL) by doing a weighted average of the measures' verified gross savings.

Table 4-1. PY9 Energy Savings by Measure

End Use Type	Research Category	Ex Ante Gross Savings (kWh)	Verified Gross Realization Rate	Verified Gross Savings (kWh)	NTGR*	Verified Net Savings (kWh)	Technical Measure Life	Persistence	Effective Useful Life (EUL) \dagger
HVAC	Enhanced HVAC Tune-up	683,059	100\%	683,056	0.95	648,903	NA	NA	3
HVAC	Notched V Belt for Supply Fan	46,503	100\%	46,507	0.95	44,181	NA	NA	3
HVAC	HVAC Scheduling/Setbacks	471,990	100\%	471,989	0.95	448,390	8	25\%	2
HVAC	Install Programmable Thermostat	844,644	97\%	820,629	0.95	779,597	8	50\%	4
HVAC	Demand Controlled Ventilation on RTU	20,562	100\%	20,562	0.95	19,534	NA	NA	10
HVAC	Dynamic Cycle Management (VFD)	142,354	100\%	142,354	0.95	135,236	NA	NA	15
HVAC	Enthalpy Economizer Optimization	45,203	100\%	45,233	0.95	42,971	NA	NA	5
	Total \ddagger	2,254,315	99\%	2,230,330	0.95	2,118,813	NA	NA	4

* A deemed value. Source: ComEd_NTG_History_and_PY9_Recommendations_2016-02-26_Final.xlsx, which is to be found on the IL SAG web site here: http://ilsag.info/net-to-gross-frameworkhtml.
\dagger EUL is a combination of technical measure life and persistence.
Source: ComEd tracking data and Navigant team analysis.
\ddagger Totals may not sum exactly due to rounding.
Table 4-2. PY9 Demand Savings by Measure

End Use Type	Research Category	Ex Ante Gross Demand Reduction (kW)	Verified Gross Realization Rate	Verified Gross Demand Reduction (kW)	NTGR*	Verified Net Demand Reduction (kW)
HVAC	Enhanced HVAC Tune-up	NR	NA	592	0.95	563
HVAC	Notched V Belt for Supply Fan	NR	NA	7	0.95	6
HVAC	HVAC Scheduling/Setbacks	NR	NA	0	0.95	0
HVAC	Install Programmable Thermostat	NR	NA	0	0.95	0
HVAC	Demand Controlled Ventilation on RTU	NR	NA	0	0.95	0
HVAC	Dynamic Cycle Management (VFD)	NR	NA	21	0.95	20
HVAC	Enthalpy Economizer Optimization	NR	NA	0	0.95	0
	Totalt	NR	NA	620	0.95	589

NR = Not Reported

* A deemed value. Source: ComEd_NTG_History_and_PY9_Recommendations_2016-02-26_Final.xlsx, which is to be found on the IL SAG web site here: http://ilsag.info/net-to-gross-framework.html
\dagger Totals may not sum exactly due to rounding.
Source: ComEd tracking data and Navigant team analysis.

Table 4-3. PY9 Peak Demand Savings by Measure

End Use Type	Research Category	Ex Ante Gross Peak Demand Reduction (kW)	Verified Gross Realization Rate	Verified Gross Peak Demand Reduction (kW)	NTGR*	Verified Peak Net Demand Reduction (kW)
HVAC	Enhanced HVAC Tune-up	NR	NA	283	0.95	269
HVAC	Notched V Belt for Supply Fan	NR	NA	7	0.95	6
HVAC	HVAC Scheduling/Setbacks	NR	NA	0	0.95	0
HVAC	Install Programmable Thermostat	NR	NA	0	0.95	0
HVAC	Demand Controlled Ventilation on RTU	NR	NA	0	0.95	0
HVAC	Dynamic Cycle Management (VFD)	NR	NA	21	0.95	20
HVAC	Enthalpy Economizer Optimization	NR	NA	0	0.95	0
	Totalt	NR	NA	310	0.95	295

NR = Not Reported
Values may not add due to rounding

* A deemed value. Source: ComEd_NTG_History_and_PY9_Recommendations_2016-02-26_Final.xlsx, which is to be found on the IL SAG web site here: http://ilsag.info/net-to-gross-framework.html.
\dagger Totals may not sum exactly due to rounding.
Source: ComEd tracking data and Navigant team analysis.

5. Impact Analysis Findings and Recommendations

5.1 Impact Parameter Estimates

The implementer provided project calculators and final project trackers. The evaluation team analyzed all the program's project calculators and verified that savings and measure counts reported in the project calculators were consistent with the implementer's final trackers. Navigant relied on the following files for ex ante savings:

- Final PY9 tracking file: "PY9 Data - Project Savings.xlsx"
- Final PY9 Value Earned Report: "360EG-SEDAC_HVACBIdgOptimization_PY9-YTD- Value Earned Report_01.07.2018.V1.xlsx"
- Project calculators: "Calculators.zip"

Navigant followed algorithms outlined in the Illinois Technical Reference Manual, version 5.0 to calculate verified gross savings for the SEDAC Program. The evaluation team verified that these algorithms and appropriate deemed input parameters were correctly applied and validated any custom parameters that were used. Navigant calculated verified net savings by multiplying gross savings by a net-to-gross ratio (NTGR). The Illinois Stakeholder Advisory Group (IL SAG) reviewed and deemed a NTGR value for the SEDAC Program.

Table 5-1 shows the key parameters and references used to calculate gross and net savings.

Table 5-1. PY9 Verified Gross Savings Parameters

Gross Savings Input Parameters	Value	Deemed or Evaluated?	Source
Quantity	Varies	Evaluated	SEDAC program project files
NTGR	0.95	Deemed	IL SAG Consensus*

* Source ComEd_NTG_History_and_PY9_Recommendations_2016-02-26_Final.xlsx, which is to be found on the IL SAG web site here:
http://ilsag.info/net-to-gross-framework.html
\dagger State of Illinois Technical Reference Manual version 5.0 from http://www.ilsag.info/technical-reference-manual.html.

5.2 Other Impact Findings and Recommendations

Verified Gross Impacts and Realization Rate

Finding 1. The PY9 SEDAC Program achieved $2,230,330 \mathrm{kWh}$ of verified gross energy savings, 620 kW of verified gross demand reduction, and 310 kW of verified gross peak demand reduction. The reported ex ante gross savings were $2,254,315 \mathrm{kWh}$ and the overall verified gross program realization rate for energy savings was 99 percent. The implementer did not track gross demand reduction or gross peak demand reduction.
Recommendation 1. Navigant recommends that the implementer track gross demand and gross peak demand reduction.

Verified Net Impacts and NTGR

Finding 2. The evaluation used a deemed net-to-gross (NTG) value of 0.95 to calculate verified net savings of $2,118,813 \mathrm{kWh}$, verified net demand reduction of 589 kW and verified net peak demand reduction of 295 kW .

Tracking System Review

Finding 3. Navigant compared the reported gross savings and installed measure quantities in the final project tracking spreadsheet "PY9 Data - Project Savings.xlsx" with individual project calculators. Navigant found four projects with inconsistent installed quantities. For example, one project completed in November 2017 reported seven thermostat units and seven DCV units in the tracking spreadsheet but its project file listed one thermostat and one DCV unit. Navigant found two projects with inconsistent gross energy savings. For example, one project completed in November 2017 reported 37,756 kWh of gross savings for an economizer measure but its project file calculated $37,786 \mathrm{kWh}$ gross savings for the same measure.
Recommendation 2. Navigant recommends that the implementer put in place quality control measures to ensure that savings and installed quantities are properly entered into the tracking system from individual project calculators.

Finding 4. Navigant compared reported gross savings in the final project tracking spreadsheet "PY9 Data - Project Savings.xlsx" with the implementer's Value Earned Report dated 01.07.2018, "360EG-SEDAC HVACBIdgOptimization_PY9-YTD- Value Earned Report_01.07.2018.V1.xIsx." Navigant found that "YTD NET" savings reported in the Value Earned Report did not factor in NTGR and were in fact gross, not net savings. Comparing gross savings, Navigant found a major discrepancy between year-to-date savings for scheduling. Scheduling savings in the project savings sheet summed to $471,990 \mathrm{kWh}$ while scheduling savings in the value earned report summed to $454,823 \mathrm{kWh}$. Navigant found smaller differences under 500 kWh between the two spreadsheets for v belt and HVAC tuneup. Navigant treated savings reported in "PY9 Data - Project Savings.xlsx" as final ex ante savings.
Recommendation 4. Navigant recommends that the implementer put in place quality control measures to ensure that savings between the project tracker and Value Earned Report spreadsheets are consistent.

Finding 5. For two thermostat projects, the implementer employed the energy use equation for a continuous fan in a low-rise office building for baseline energy use and the equation for intermittent fan for proposed energy use. This shows that the implementer changed the building thermostat from continuous fan mode to intermittent fan mode during the occupied period, which is against commercial mechanical code according to the TRM. Therefore, Navigant set the verified gross savings for these two projects at 0 . Navigant also found two other errors. The implementer did not properly adjust climate zone coefficient (CZ) value based on Fo and used the value for intermittent fan mode during occupied period for both the baseline and proposed case. Lastly, the implementer accounted for Cooling Capacity (Tons) twice in the baseline energy use.
Recommendation 5. Navigant recommends the implementer follow commercial mechanical code which advises against changing thermostats from continuous to intermittent during occupied periods to meet ventilation requirements.

Program Participation

Finding 6. The program installed 287 measures across 79 projects in PY9. A municipality was the program's largest client with 61 projects followed by a county's park districts and another's county buildings each with five projects. Libraries made up the largest type of project with 27 projects followed by emergency response buildings such as fire departments with 24 projects.

6. Appendix 1. Impact Analysis Methodology

Energy and demand savings were estimated using Illinois TRM v5.0. The Illinois TRM deems most input parameters for program measures and are provided below.

6.1 Installed Programmable Thermostats

Thermostat savings represent 37 percent of the total verified gross savings and have a realization rate of 96 percent. The realization rate was reduced due to two projects. The equation for thermostat savings from TRM v5.0 Section 4.4.18 is as follows:

$$
\Delta \mathrm{kWh}=[\text { Baseline Energy Use (kWh/Ton) - Proposed Energy Use (kWh/Ton)] * Cooling Capacity (Tons) }
$$

where the TRM provides equations for energy use based on building type and a continuous or intermittent fan mode during the occupied period (Fo). The equations for energy use are functions of the climate zone coefficient (CZ), degrees of cooling setback (Tc), degrees of heating setback (Th), fan mode during
unoccupied period (Fu) and weekly hours during occupied mode (Ws). The TRM also makes the following note: "Commercial mechanical code requires continuous fan operation during occupied periods to meet ventilation requirement" ${ }^{1}$.

6.2 Enthalpy Economizer Optimization

Economizer savings represent two percent of the total verified gross savings and have a realization rate of 100%. The implementer provided data and calculators for the two economizer projects. Navigant verified the method as reasonable.

6.3 HVAC Tune-Up

$$
\begin{aligned}
& \Delta k W h=\frac{k B t u}{h r} *\left(\frac{1}{E E R_{\text {before }}}-\frac{1}{E E R_{\text {after }}}\right) * E F L H \\
& \Delta k W=\frac{k B t u}{h r} *\left(\frac{1}{E E R_{\text {before }}}-\frac{1}{E E R_{\text {after }}}\right) * C F
\end{aligned}
$$

Where:

$$
\begin{array}{ll}
\text { kBtu/hr } & =\text { Capacity of cooling equipment } \\
E E R_{\text {before }} & \text { = Energy efficiency ratio of equipment prior to tune-up } \\
E E R_{\text {after }} & =\text { Energy efficiency ratio of equipment after tune-up } \\
E F L H & =\text { Equivalent full load hours for cooling } \\
C F & =\text { Summer peak coincidence factor }
\end{array}
$$

Table 6-1. HVAC Tune-up Custom and Deemed Values Comparison

Value	Variable	Source	Deemed/Custom
Actual	$\mathrm{kBtu} / \mathrm{hr}$	Program Tracking Data	Custom
Actual	EERbefore	Program Tracking Data	Custom
Actual	EERaater	Program Tracking Data	Custom
Varies by Climate Zone	EFLH	IL TRM v5.0, 4.4.1	Deemed
47.8%	CF	IL TRM v5.0, 4.4.1	Deemed

6.4 Notched V Belt for Supply Fan

$$
\begin{aligned}
& \Delta k W h=k W_{\text {connected }} * \text { Hours } * E S F \\
& \Delta k W=k W_{\text {connected }} * E S F \\
& k W_{\text {connected }}=H P * 0.746 * \frac{L F}{\text { Motor Efficiency }}
\end{aligned}
$$

[^0]Where:

$k W_{\text {connected }}$	
	$=$ Electrical demand of HVAC equipment
Hours	$=$ Annual hours of operation
ESF	= Energy savings factor
HP	$=$ Nominal horsepower
0.746	=kWh/Btu conversion factor
LF	$=$ Load factor
Motor Efficiency	$=$ Motor efficiency

Table 6-2. V-Belts Custom and Deemed Values Comparison

Value	Variable	Source	Deemed/ Custom
Actual	kW connected	Calculated	Custom
Varies by Building Type	Hours	IL TRM v5.0, 4.4.30	Deemed
2%	ESF	IL TRM v5.0, 4.4.30	Deemed
Actual	HP	Program Tracking Data	Custom
80%	LF	IL TRM v5.0, 4.4.30	Deemed
Varies by Motor Size	Motor Efficiency	IL TRM v5.0, 4.4.30	Deemed

6.5 HVAC Scheduling/Setbacks and Install Programmable Thermostat

$$
\begin{aligned}
& \Delta k W h=[\text { Baseline Usage }- \text { Proposed Usage }] * \text { Capacity } \\
& \Delta k W=0
\end{aligned}
$$

Where:

Baseline Usage	= Per-ton baseline energy usage, k Wh/ton
Proposed Usage	= Per-ton proposed energy usage, kWh/ton
Capacity	= Cooling system capacity, tons
CZ	= Climate zone coefficient
Fu	= Fan mode during unoccupied period
Fo	= Fan mode during occupied period
Th	= Degrees of heating setback, ${ }^{\circ} \mathrm{F}$
TC	= Degrees of cooling setback, ${ }^{\circ} \mathrm{F}$
Ws	= Weekly hours thermostat is in occupied moder

Table 6-3. Thermostat Custom and Deemed Values

Value	Variable	Source	Deemed/ Custom
Varies by building type and Fo	Baseline Usage	IL TRM v5.0, Section 4.4.18 and 4.4.25	Calculated
Varies by building type and Fo	Proposed Usage	IL TRM v5.0, Section 4.4.18 and 4.4.25	Calculated
Actual	Capacity	Program Tracking Data	Custom
Varies	CZ	Program Tracking Data	Custom
Actual	Fu	Program Tracking Data	Custom
Actual	Fo	Program Tracking Data	Custom
Actual	Th	Program Tracking Data	Custom
Actual	Tc	Program Tracking Data	Custom
Actual	Ws	Program Tracking Data	Custom

6.6 Demand Controlled Ventilation on Rooftop Unit

$$
\begin{aligned}
& k W h=\text { Conditioned Space } / 1000 * S F_{\text {cooling }} \\
& \Delta k W=0
\end{aligned}
$$

Where:

$$
\begin{array}{ll}
\text { Conditioned Space } & =\text { Square footage of conditioned space controlled by sensor } \\
\text { SF }_{\text {cooling }} & =\text { Cooling savings factor }
\end{array}
$$

Table 6-4. Demand Controlled Ventilation Custom and Deemed Values

Value	Variable	Source	Deemed/ Custom
Actual	Conditioned Space	Program Tracking Data	Custom
Actual	SF	cooling	Program Tracking Data

6.7 Variable-Frequency Drive

$$
\begin{aligned}
& \Delta k W h=\Delta k W h_{\text {fan }} \times\left(1+I E_{\text {energy }}\right) \\
& k W h_{\text {Base }}=\left(0.746 \times H P \times \frac{L F}{\eta_{\text {motor }}}\right) \times R H R S_{\text {Base }} \times \sum_{0 \%}^{100 \%}\left(\% F F \times P L R_{\text {Base }}\right) \\
& k W h_{\text {Retrofit }}=\left(0.746 \times H P \times \frac{L F}{\eta_{\text {motor }}}\right) \times R H R S_{\text {base }} \times \sum_{0 \%}^{100 \%}\left(\% F F \times P L R_{\text {Retrofit }}\right) \\
& \Delta k W h_{\text {fan }}=k W h_{\text {Base }}-k W h_{\text {Retrofit }} \\
& \Delta k W=\Delta k W_{\text {fan }} \times\left(1+I E_{\text {energy }}\right) \\
& k W_{\text {Base }}=\left(0.746 \times H P \times \frac{L F}{\eta_{\text {motor }}}\right) \times P L R_{\text {Base }} \\
& k W_{\text {Retrofit }}=\left(0.746 \times H P \times \frac{L F}{\eta_{\text {motor }}}\right) \times P L R_{\text {Retrofit }} \\
& \Delta k W_{\text {fan }}=k W_{\text {Base }}-k W_{\text {Retrofit }}
\end{aligned}
$$

Where:

$k W h_{\text {Base }}$	$=$ Baseline annaul energy consumption
$k W h_{\text {Retrofit }}$	
$\Delta k W h_{\text {fan }}$	$=$ Retrofit annual energy consumption
$H P$	
IF Fan-only annual energy savings	
$\eta_{\text {motor }}$	$=$ Nominal hosepower of controlled motor
$R H R S_{\text {Base }}$	$=$ Installed motor efficiency
$\% F F$	
$P L R$	Annual operating hours for fan motor
$I E_{\text {energy }}$	

Table 6-5. Variable-Frequency Drive Custom and Deemed Values

Value	Variable	Source	Deemedl Custom
Actual	$k W h_{\text {Base }}$	IL TRM v5.0, Section 4.4.35	Calculated
Actual	$k W h_{\text {Retrofit }}$	IL TRM v5.0, Section 4.4.35	Calculated
Actual	$\Delta k W h_{\text {fan }}$	IL TRM v5.0, Section 4.4.35	Calculated
Actual	HP	Program Tracking Data	Custom
0.65	LF	IL TRM v5.0, Section 4.4.35	Deemed
Actual	$\eta_{\text {motor }}$	Program Tracking Data	Custom
Varies by building type	RHRS ${ }_{\text {Base }}$	IL TRM v5.0, Section 4.4.35	Deemed
Varies by control type	$\sum_{0 \%}^{100 \%}\left(\% F F \times P L R_{\text {Base }}\right)$	IL TRM v5.0, Section 4.4.35	Deemed
Varies by control type	$\sum_{0 \%}^{100 \%}\left(\% F F \times P L R_{\text {Retrofit }}\right)$	IL TRM v5.0, Section 4.4.35	Deemed
15.7\%	$1 E_{\text {energy }}$	IL TRM v5.0, Section 4.4.35	Deemed

6.8 Economizer Repair and Optimization

```
\(\Delta k W h=[\) Baseline Usage - Proposed Usage \(] *\) Capacity
\(\Delta k W=0\)
```

Where:

Baseline Usage	$=$ Per-ton baseline energy usage, $k W h / t o n$
Proposed Usage	$=$ Per-ton proposed energy usage, $\mathrm{kWh} /$ ton
Capacity	$=$ Cooling system capacity, tons
CZ	= Climate zone coefficient
Fu	= Fan mode during unoccupied period
Fo	Fan mode during occupied period
Th	$=$ Degrees of heating setback, ${ }^{\circ} \mathrm{F}$
Tc	= Degrees of cooling setback, ${ }^{\circ} \mathrm{F}$
Ws	= Weekly hours thermostat is in occupied mode

Table 6-6. Economizer Custom and Deemed Values

Value	Variable	Source	Deemed/ Custom
Varies by building type and changeover type	Baseline Usage	IL TRM v5.0, Section 4.4.35	Calculated
Varies by building type and changeover type	Proposed Usage	IL TRM v5.0, Section 4.4.35	Calculated
Actual	Capacity	Program Tracking Data	Custom
Varies	CZ	Program Tracking Data	Custom
Actual	Fu	Program Tracking Data	Custom
Actual	Fo	Program Tracking Data	Custom
Actual	Th	Program Tracking Data	Custom
Actual	Tc	Program Tracking Data	Custom
Actual	Ws	Program Tracking Data	Custom

7. Appendix 2. Total Resource Cost Detail

Table 7-1 includes variables for the Total Resource Cost (TRC) test. It only includes analysis inputs available at the time of finalizing the PY9 SEDAC impact evaluation report. Additional required data (e.g., measure costs, program level incentive and non-incentive costs) are not included in this table and will be provided to the evaluation team at a later date. EULs are not final and are subject to change.

Table 7-1. Total Resource Cost Savings Summary

End Use Type	Research Category	Units	Quantity	Effective Useful Life	Ex Ante Gross Savings (kWh)	Ex Ante Gross Peak Demand Reduction (kW)	Verified Gross Savings (kWh)	Verified Gross Peak Demand Reduction (kW)
HVAC	Enhanced HVAC Tune-up	Each	118	3	683,059	NR	683,056	283
HVAC	Notched V Belt for Supply Fan	Each	89	3	46,503	NR	46,507	7
HVAC	HVAC Scheduling/Setbacks	Each	26	8	471,990	NR	471,989	0
HVAC	Install Programmable Thermostat	Each	37	8	844,644	NR	820,629	0
HVAC	Demand Controlled Ventilation on RTU	Each	7	10	20,562	NR	20,562	0
HVAC	Dynamic Cycle Management (VFD)	Each	8	15	142,354	NR	142,354	21
HVAC	Enthalpy Economizer Optimization	Each	2	5	45,203	NR	45,233	0

Source: ComEd tracking data and Navigant team analysis.

[^0]: ${ }^{1}$ Page 231 of Illinois Statewide Technical Reference Manual for Energy Efficiency Version 5.0, available at: http://www.ilsag.info/technical-reference-manual.html.

