

ComEd Residential, Commercial and Industrial Saturation/End-Use Research, Market Penetration and Potential Study

Itron, Inc.

Dunsky Energy Consulting

Energy Resources Center, University of Illinois Chicago

Trend Tech Energy Services, LLC

PRESENTATION OUTLINE

- » Residential primary data collection methods and results (50 mins)
- » Commercial primary data collection methods and results (50 mins)
- » Industrial data collection methods and results (20 mins)

RESEARCH GOALS AND OBJECTIVES

As stated in the RFP...

- 1. Collect detailed baseline data for as many market segments as possible
- 2. Develop distributions of end-use energy consumption by segment
- **3**. Develop trend analysis of EE market penetration for key technologies
- 4. Estimate economic potential of EE
- Characterize incremental costeffective potential that exists beyond expected market trends

- 6. Provide a concise summary of key findings
- Deliver all primary and secondary data in an easy-to-use format that allows combination with other internal and external datasets

PROJECT SCOPE & STATUS

Overview of Task-Level Workflow and Interdependencies

OVERVIEW OF ITRON TEAM

Composition and Roles

Prime bidder

- Overall project management
- Lead for:
 - Task 1 (Primary Data Collection)
 - Task 3a (Energy Utilization Distributions)
 - Task 4 (Analysis of ComEd EE Markets)

- Subcontractor
- Lead for:
 - Task 2 (Market Penetration Study)
 - Task 3b (Economic Potential)
- Support for:
 - Task 4 (Analysis of ComEd EE Markets)

TREND TECH ENERGY SERVICES

Green Home Experts

Subcontractors

- Support for:
 - Task 1 (Primary Data Collection)

Methods and results

Overview of Key Activities

Sample Frame Development

» Itron's (formerly Silver Spring Networks') Operations Optimizer already fully deployed at ComEd

- » Operations Optimizer contains billing data (2007+), AMI data (2010+), up-to-date CIS, plus:
 - Tax assessor data for most residential accounts (all of Cook County)
 - Grid connectivity mapping

Sample Design

» Developed the following sample design variables in collaboration with ComEd:

- Building type (Single-family, Multi-family)
- Whole-home consumption (Low, Medium, High)
- Location (Chicago, Suburban, Other/Rural)
- Income Eligibility (Low income eligible, Non-low income eligible)

» 36 total sample strata:

• Population numbers in certain strata are small (e.g. all MF/Rural strata)

Multi-Modal Survey Design

WHY USE A MULTI-MODAL SURVEY DESIGN?

» Several fundamental tradeoffs between sample size and depth/accuracy of data collection

- Standard web or telephone surveys: cheap (large sample sizes), but unreliable data on end-use equipment characteristics (e.g. capacity, rated efficiency) due to lack of customer knowledge and/or user recall error
- On-site surveys: accurate data on equipment characteristics, but expensive (small sample sizes)

» Itron's multi-modal approach designed to overcome these tradeoffs by:

- Using mass mailings of postcards to recruit customers into web survey (\$25 Amazon.com gift card incentives)
- Optimizing the web survey for mobile devices
 - Allows survey to leverage device mobility for room-by-room lighting inventories
 - Allows survey to leverage technologies available on mobile devices (cameras, location services)

» Key features of mobile-optimized survey:

- "Self-report" questions limited to variables that customers know with a high degree of accuracy (e.g. home size, occupancy, rent vs. own, etc.)
- Equipment characteristics collected by having customers take and upload photos of their equipment nameplates

» Bottom line: approach generates "on-site quality" baseline information at the cost and scale of standard telephone surveys

RESIDENTIAL SURVEY BACK OFFICE WORKFLOW

Survey Implementation

- » Postcards m
- » Objectives o
 - Verify accurac
 - Verify accurac
- » First wave =
 - Offered addition
 - >60 customers
 - Completed 46
- » Bottom line f
 - 97% of self-re

Overall participation in web survey:

- ~2,000 click-ins
- ~3,000 nameplate images submitted
- Analytic dataset varies from ~1,700 to ~800 (depending on the end-use in question) due to attrition from beginning to end of survey
- 94% of model numbers derived from nameplate images verified to be correct and at customer premise
- » Second wave = 30,000 postcards (mailed mid-May)

surveys

SURVEY DISPOSITION BY STRATA CATEGORY

	Strata Group	N Survey	% Survey	% Рор
Housing Type	Single Family	1,674	81%	74%
	Multi Family	396	19%	26%
	Chicago	674	33%	29%
Geography	Suburban	807	39%	69%
	Other	589	28%	2%
	High	701	34%	34%
Usage	Medium	779	38%	33%
	Low	590	29%	33%
Income Level	Non-Low Income	1,364	66%	58%
	Low Income	706	34%	42%

RESULTS OUTLINE

... in case we're already running behind schedule

- » Household characteristics (3)
- » Building envelope (2)
- » Space cooling (11)
- » Space heating (3)
- » Thermostats (2)
- » Water heating (2)
- » Laundry appliances (4)
- » Kitchen appliances (6)
- » Interior lighting (3)
- » Exterior lighting (1)

- » Dehumidifiers & air purifiers (2)
- » Water fixtures (1)
- » Consumer electronics (2)
- » Key findings (5)
- » All slides = 47
- » Highlighted slides = 36

HOUSEHOLD CHARACTERISTICS

Average home size

HOUSEHOLD CHARACTERISTICS

Home ownership

HOUSEHOLD CHARACTERISTICS

EV and PV penetration

BUILDING ENVELOPE

Prevailing window type

BUILDING ENVELOPE

Share of homes with recent insulation work

Saturation of central cooling by system type

Distribution of central cooling system capacity per home

Average central cooling system capacity per home

Distribution of central cooling system rated efficiency

Central cooling systems maintenance

Room cooling saturation, average EER, and usage

- Always (7 days per week)
- Often (5-6 days per week)
- Sometimes (3-4 days per week)
- Rarely (1-2 days per week)

		Average Rated	Share of Units
Segment	Saturation	EER	<6 years old
SFD	10%	10.16	49%
MFD	40%	10.44	49%
Total	18%	10.32	49%

Saturation of fans used for room cooling

SPACE COOLING Utilization analysis

» Despite collecting data to characterize distribution of rated efficiency and capacity of space cooling equipment, space cooling energy consumption also greatly impacted by building envelope performance and customer behavior

- Result is that space cooling consumption varies more widely (at the customer-level) than any other major electric end use
- » In turn, analyzing cost-effectiveness of space cooling measures in aggregate (e.g. when estimating economic potential) can introduce significant "aggregation bias"
 - When point averages that indicate a given measure is not cost-effective for a given segment, when in fact it is cost-effective for a significant portion of that segment
- » ComEd expressed a strong interest in using data collection and analysis approaches designed to minimize aggregation bias wherever possible
 - For most major residential end uses, we can adequately characterize the distribution of end-use energy consumption based on large samples of rated capacity and efficiency data
 - For space cooling, we augmented our rich data set with a dedicated analysis designed to characterize the distribution of space cooling energy consumption using two main analytic frameworks – load disaggregation and cluster analysis

SPACE COOLING Utilization analysis

» Itron's Operations Optimizer data analytics platform include a load disaggregation module

- » OO combines statistical regressions of AMI and weather data with physics-based calculations that take into building square footage and vintage (available from tax assessor data) to estimate load associated with space cooling
 - Enabled OO's load disagg module on a one-time basis to generate space cooling estimates for each of the customers that responded to our web survey
 - Modified load disagg algorithm to use customer-specific CAC capacity and SEER values as inputs
- » Used modified algorithm to generate customer-specific space cooling consumption estimates that are calibrated to actual customer load, home size, home vintage, and CAC capacity and SEER (1,277 customers total)
- » Next objective was to identify the best way to group customers such that the aggregate results for those groups adequately reflected the full distribution of space cooling consumption
- » Used k-means cluster analysis to characterize distribution of space cooling into 3, 6, 9, and 12 clusters

Utilization analysisPrimary objective of cluster analysis was to

SPACE COOLING

- provide a data-driven basis to define segments for potential modeling that minimized aggregation bias for space cooling measures
- » Analyzed characteristics of customers in each cluster to identify variables in our sample frame that best explain differences between clusters
 - Building type (SFD, MFD)
 - Whole-home consumption (H, M, L)
 - Home size (<2,000 ft2, >=2,000 ft2)
 - Low-income program eligibility
- » Collapsed several segments with very low customer populations, similar average space cooling consumption, and/or similar market adoption barriers

» Final segments for potential modeling (9):

Segment	Avg CAC kWh/yr
01.SFD-H-<2Kft2-nonLl	3,054
02.SFD-H->2Kft2-nonLl	2,862
03.SFD-M-<2Kft2-nonLl	2,089
04.SFD-M->2Kft2-nonLl	1,799
05.SFD-L-nonLl	1,190
06.MFD-H-nonLl	2,208
07.MFD-M-nonLI	921
08.MFD-L-nonLl	1,037
09.SFD-<2Kft2-LI	2,077
10.SFD->2Kft2-LI	2,508
11.MFD-LI	2,475
Total	2,127

SPACE HEATING

Saturation of central heating by technology and fuel

SPACE HEATING Central heating systems maintenance

SPACE HEATING

Portable space heating ownership and usage

THERMOSTATS

Saturation of thermostats by type

THERMOSTATS

Frequency of overriding programmed thermostat settings

WATER HEATING

Fuel shares of water heating

WATER HEATING

Saturation of insulation measures for electric water heating systems

Share with Tank Wrap

Share with Pipe Wrap

Saturation of clothes washers

Distribution of clothes washers rated efficiency (Modified Energy Factor)

Saturation of clothes dryers

No clothes dryer
Bottled gas clothes dryer
Natural gas clothes dryer
Electric clothes dryer

Distribution of clothes dryer rated efficiency (Combined Energy Factor)

Saturation of refrigerators

Distribution of refrigerator rated annual consumption (kWh/yr)

Saturation of stand-alone freezers

Distribution of stand-alone freezer rated annual consumption (kWh/yr)

Saturation of dishwashers

Distribution of dishwasher rated annual consumption (kWh/yr)

Rated Annual Consumption (kWh/yr)

Average number of sockets by technology

Average number of sockets by technology

Average number of sockets by technology and lamp shape

Replace on burnout plans

EXTERIOR LIGHTING

Average number of sockets by technology and control type

DEHUMIDIFIERS & AIR PURIFIERS

Saturation of air purifiers, dehumidifiers, and humidifiers

DEHUMIDIFIERS & AIR PURIFIERS

Usage of air purifiers and dehumidifiers

WATER FIXTURES

Average number of water fixtures and saturation of water efficiency measures

CONSUMER ELECTRONICS

Saturation of smart power strips and systems controlled in those homes

CONSUMER ELECTRONICS

Saturation of voice-activated devices and systems controlled in those homes

LEDs have become the dominant residential lighting technology

End-Uso/Tochnology	Motric	2012 Baseline Study			2019 Baseline Study			
Lind-Ose/Technology	Merric	All	SFD	MFD	All	SFD	MFD	
Lighting								
Incandescent	Share of all sockets	65%	66%	60%	19%	20%	11%	
CFL	Share of all sockets	20%	19%	24%	12%	11%	14%	
Linear Fluorescent	Share of all sockets	8%	9%	5%	5%	5%	6%	
Halogen	Share of all sockets	6%	5%	11%	3%	3%	3%	
LED	Share of all sockets	1%	1%	0%	55%	54%	58%	

Small increase in CAC efficiency, but little evidence of fuel switching away from gas

End Use/Technology	Motric	2012 Baseline Study All SFD MFD		Study	2019 Baseline Study			
End-0se/ rechnology	Merric			MFD	All	SFD	MFD	
Space Cooling								
Central air conditioner	Share of all homes	73%	87%	46%	80%	87%	48%	
<14 SEER	Share of all CAC systems	93%	-	-	87%			
Space Heating								
Primary electric space heating	Share of all homes	10%	4%	24%	9%	8%	13%	
Heat pump	Share of all homes	2%	-	-	2%	2%	1%	
Water Heating								
Electric water heating	Share of all homes	8%	6%	13%	9%	8%	11%	
Water heater tank wrap	Share of all homes	3%	-	-	7%			
Hot water pipe wrap	Share of all homes	9%	-	-	17%			
Faucet aerators	Share of all homes	62%	-	-	47%	49%	38%	
Low-flow showerheads	Share of all homes	40%	-	-	60%	61%	51%	

Strong evidence of impact of ComEd's appliance recycling programs

End Use/Technology	Motric	2012 Baseline Study			2019 Baseline Study		
	Merric	All	All SFD MFD		All	SFD	MFD
Laundry Appliances							
Clothes washers	Share of all homes	80%	98%	47%	90%	98%	62%
Electric clothes dryers	Share of all homes	25%	26%	23%	25%	27%	17%
Kitchen Appliances							
Refrigerator	Share of all homes	100%	100%	100%	99%	99%	100%
Secondary refrigerator	Share of all homes	30%	42%	7%	20%	24%	9%
Standalone freezer	Share of all homes	31%	40%	13%	21%	23%	21%
Dishwasher	Share of all homes	67%	75%	54%	63%	68%	41%
Room HVAC							
Window air conditioner	Share of all homes	30%	18%	52%	18%	10%	40%
Air purifier/humidifier	Share of all homes	36%	31%	27%	16%	18%	12%
Dehumidifier	Share of all homes	23%	34%	5%	12%	16%	3%

Laundry appliance stock turnover likely to be highest in near-term (compared to other appliances)

Penetration of "new" consumer technologies is already significant

- » Penetration of the newest consumer technologies which control or have the potential to control aspects of residential energy consumption is already significant
 - Communicating thermostats = 24% (commercially available since 2011)
 - Smart power strips = 37% (commercially available since 2011)
 - Voice-activated smart speakers = 30% (commercially available since 2016)
- » These markets are highly dynamic and should be considered in stark contrast to those of the other major residential end uses
- » These devices currently control only a very small portion of residential load, but the potential (and probability) for these technologies to influence a much larger percentage of residential load *in the very near future* is significant

THANK YOU

STRATEGIC ANALYTICS GROUP

1111 Broadway, Suite 1800 Oakland, CA 94607

www.itron.com

